
Sample External Service V3.5
Introductions
External Service v3.5 is a sample project that allows you to quickly implement an External Service V3.5

APIs to allow the Vitrium software to talk to your systems for authentication and authorization.

This project is written in PHP with Laravel Framework and dependencies can be installed with

Composer.

This project is compatible with v3.5 of the Vitrium External Service specification. Contact your Vitrium

Sales Rep or Technical Contact if you require information on the External Service V3.5 specification or

instructions on configuring your Vitrium account to use this service.

For more details on Laravel Framework visit the following link https://laravel.com/docs/10.x

Installing Dependencies
This example supports PHP Version 8.2.0 +

Install the latest version of Composer from the following link:

https://getcomposer.org/Composer-Setup.exe

To install the dependencies navigate to the root folder, run the following command:

composer update

Running the project
To run the project, run the following command:

- default(Local Environment)

php artisan serve

- custom(host with a specific port 23456)

php artisan serve --host=0.0.0.0 --port=23456

https://laravel.com/docs/10.x
https://getcomposer.org/Composer-Setup.exe

Project Configuration
The default port this project runs on is 8000. To host the external service application on your local

machine, please run the project on a custom port & configure port-forward setting from your router.

Also, make sure to allow the port in firewall’s inbound rule if you have an active windows firewall.

IMPORTANT

DO NOT PORT-FORWARD 80, 8080 and other common ports. You might be vulnerable to Port Scanning

Attack and this could put your entire network and associated computers at critical risk.

Connecting the project to Vitrium
Inside Vitrium, navigate to the “Settings” tab, and in the “Account Settings” subtab, enable external

service. Select API Version “3.5” in the dropdown that appears underneath and set the “Service URL” to

the url of the server that this external service is running on. For details, please refer to the following.

Enable External Service

API: 3.0

Service Url: http://YourPublicIpAddress:PortNumber/vitrium/service/3.5/

Service Timeout: 30

Web Viewer SSO Token Name: token

Enable SSO

Query Parameters: token

*Enable Show External Readers, if you would like to load users through external service

http://YourPublicIpAddress:PortNumber/vitrium/service/3.0/

Endpoints

Permissions [GET]

http://YourPublicIpAddress:PortNumber/vitrium/service/3.5/permissions?userid={id}

Readers [GET]

http://YourPublicIpAddress:PortNumber/vitrium/service/3.5/readers?page={"index":1,"size":20}&filter={"contains":"{ke

ywords}"}&sort={"Username":1}

Web Viewer Document Authentication [POST]

https://view.protectedpdf.com/YourDocumentAlias?token=
RjRJUXJDd1VzZmIyTEZVTHFVYTNpQittSjRXa1BHdnMwSFJRWXAvRjB1cz0=

Get Token [GET]

http://YourPublicIpAddress:PortNumber/gentoken?email=user01@example.com

Database

Example user database for this sample project is stored in JSON File

For adding/updating users, check: /database/userdata.json

[

 {

 "Id": "8d241bea-e714-4182-8257-01abfebff134",

 "Username": "user01@example.com",

 "IsActive": true,

 "AccessPolicy": null

 },

]

http://YourPublicIpAddress:PortNumber/vitrium/service/3.0/readers?page=%7b%22index%22:1,%22size%22:20%7d&filter=%7b%22contains%22:%22%7bkeywords%7d%22%7d&sort=%7b%22Username%22:1%7d
http://YourPublicIpAddress:PortNumber/vitrium/service/3.0/readers?page=%7b%22index%22:1,%22size%22:20%7d&filter=%7b%22contains%22:%22%7bkeywords%7d%22%7d&sort=%7b%22Username%22:1%7d
http://YourPublicIpAddress:PortNumber/gentoken?email=user01@example.com

Laravel Structure

For API endpoint routing, check: /route/web.php

// route for /authenticate endpoint v3.5. it will load AuthenticateController class then authenticate_3_5() function
Route::post('/vitrium/service/3.5/authenticate', [AuthenticateController::class, 'authenticate_3_5']);

The above code will call authenticate_3_5() function inside AuthenticateController

For Controllers, check: /app/Http/Controllers/

ServiceAuthenticate.php

if(!empty($request['Token']) && !is_null($request['Token'])){

 // Decrypt Token to obtain username
 $username = VitriumUtility::tokenHasher("decrypt", $request['Token']);

} else {

 // Obtain username from the request
 $username = $request['Username'];
}

// validate access by username
if($this -> validateAccess($username)){

 $message = 'Authentication success with '.$username;
 $request['consolelog'] === false ? '' : $out->writeln($message);
 // *if you don't send $succeed = true; in the response it will display error
 $succeed = true;

} else {

 $message = 'Authentication failed. Invalid username or email';
 $request['consolelog'] === false ? '' : $out->writeln($request);

}

This code example demonstrates a basic authentication process. It verifies user access by comparing their provided

username against a list of authorized users stored in a JSON file named 'userdata.json'.

By connecting to your database, you can retrieve the necessary user data for validation. Upon successful validation,

setting $success = true; signifies that the access has been authenticated.

*You can use $out->writeln($message); to output messages to console.

PermissionsController.php

// http://vitriumservice.com/api/3.5/permissions?userid={userid}
// to receive the fields from payload, use $request['FIELD_NAME']
$out = new \Symfony\Component\Console\Output\ConsoleOutput();

// data is here, i.e) make an external API request or DB query
$response = [
 "DocIds" => [],
 "FolderIds" => [],
 "docExternalKeys" => [],
 "FolderExternalKeys" => [],

];

Permissions endpoint is called when you try to access portal. It calls authentication endpoint then permissions

endpoint to filter out specified documents in the above response array. Easiest way to handle this will be using

docExternalKeys.

ReaderController.php

// load user database to $data array
$file = base_path('/database/userdata.json');
$jsonData = file_get_contents($file);
$data = json_decode($jsonData, true);

 / *
 define paging and filtering rule
 */

// return filtered user array
if(!empty($data)){
 $response = [

 "Results" => array_values($data), // use array_values remove index keys from data array
 "TotalRecords" => $totalRecords

];
 $message = 'GET - Request successful ~/readers/ #Total Records: '.$totalRecords.', Pages: '.$totalPages.', Records
per Page: '.$size.', Applied Filter: '.$filterBy;

You must Enable Show External Readers, if you would like to load users through readers endpoint.

Above shows example of required response. Other than this part of this code is just for pagination and

filtering out the result.

