
/api/{version}/File
There is a one initial request needed and then with additional requests you can upload parts

of a file. The size of a part (except the last one) is 4194304 bytes. This API should be used

only for large files (100MB+). Uploaded file will be in our system available for 1 day.

All requests must contain headers with valid values:

1.X-VITR-ACCOUNT-TOKEN

2.X-VITR-SESSION-TOKEN

Initial request
Request type: POST

This request must contain form data which has these fields:

1.ufname – contains name of a file (for example “testPDF.pdf”)

2.umime – contains mime type of file (for example “application/pdf”)

3.usize – contains size of a file (for example “391211402”)

4.packetcount – contains the total number of packets (Original file size / chunk file size)

The request content’s type is “multipart/form-data”.

This initial request will return a response:

{"Guid":"a6a02a88-5c46-4845-ba92-3cd13563b021","Packet":0}

Packet request (this needs to be in loop until it uploads all the

chunks)
Request type: POST

We can calculate total packet count by <fileSize> divided by <packetSize> which is in our

system 4194304 bytes. So for file of size 391211402 bytes we get this:

391211402 / 4194304 = 93.2720665932 <= 94 packet requests

This request contains form data with a part of file. The form field name can be anything (for

example “file”).

We should send packets from 1 to N one by one.

There are needed parameters in the URL:

1.guid – id of the file obtained in the initial request (for example “a6a02a88-5c46-4845-

ba92-3cd13563b021”)

2.packet – which part of the file this request contains (starting from 1)

3.total – number of total packages which will be sent to the server (for example “94”)

*Parse the above parameters in Query Parameters and attach the chunk file in form-data.

The response will look like this for the first packet sent:

{"Guid":"a6a02a88-5c46-4845-ba92-3cd13563b021","Packet":1}

The “Packet” field contains a packet which was received by server so we can send “Packet” +

1 next. If the value in “Packet” field will be “-1” there was an error and we have to start

again.

If the “Packet” field value equals to total packet count, you successfully uploaded the file.

/api/{version}/Doc

Upload request
Request type: POST

Now you can use the doc upload API to create the content, just instead of “rawfile” in form

data add “filename” which contains the <guid>.<extension> string (for example “a6a02a88-

5c46-4845-ba92-3cd13563b021.pdf”).

Reference the json example below:

{“filename”: “a6a02a88-5c46-4845-ba92-3cd13563b021.pdf”, “settings”:

{"Id":"","FolderId":"","PolicyId":"","FileName":"ORIGINALFILENAME","Title":" ORIGINALFILENAME

","SkipPages":"","ExternalKey":"","VersionName":"Version: 1","EnableVersionNotification":true}

*Both filename and settings field are required

